Promises, constraint satisfaction, and problems Beyond universal algebra (part I)

Jakub Opršal

AAA 100, 6 Feb 2021

overview

Part I (today)

► algebraic approach to (promise) constraint satisfaction.

Part II (tomorrow)

- beyond algebraic approach
- ► open problems

Everything is finite! (Well, almost.)

I will not talk about Galois connections. Sorry, Reinhard.

There are no algebras in this talk!

Definitions ahead.

an old story

- dichotomy of Boolean CSPs [Scheafer, "78]
- dichotomy of (undirected) graph CSPs [Hell, Nešetřil, "90]
- the dichotomy conjecture [Feder, Vardi, "98]
- pol-inv Galois correspondence [Cohen, Gyssens, Jeavons, "97]
- HSP closure [Bulatov, Jeavons, Krokhin, '05]
- Taylor implies WNU [Maróti, McKenzie, '08]
- algorithms given WNU polymorphisms [Bulatov, '17; Zhuk, '17]

reductions

Assume that **A** and **B** are two (finite) relational structures.

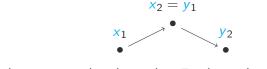
A reduction from $CSP(\rho \mathbf{A})$ to $CSP(\mathbf{A})$ is a mapping

 λ : structures similar to $\rho \mathbf{A} \rightarrow$ structures similar to \mathbf{A}

such that

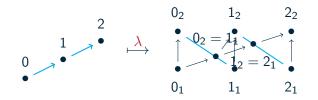
 $I \rightarrow \rho A$ iff $\lambda I \rightarrow A$.

a gadget reduction λ



 $\phi(x_1, x_2, y_1, y_2) = (x_1, x_2) \in E \land (y_1, y_2) \in E \land x_2 = y_1.$

Example



a pp-power
$$ho$$

$$\begin{split} \rho \mathbf{A} \text{ is a pp-power of } \mathbf{A}. \\ \text{Concretely, } \rho \mathbf{A} &= (A^2; E^{\rho \mathbf{A}}) \text{ where} \\ & ((a_1, a_2), (b_1, b_2)) \in E^{\rho \mathbf{A}} \\ & \text{ iff } \mathbf{A} \models \phi(a_1, a_2, b_1, b_2) \\ & \text{ iff } (a_1, a_2) \in E^{\mathbf{A}} \land (b_1, b_2) \in E^{\mathbf{A}} \land a_2 = b_1. \end{split}$$

Observation

$$I \rightarrow \rho A$$
 iff $\lambda I \rightarrow A$

algebraic approach in a nutshell

Theorem [Bulatov, Jeavons, Krokhin, '05; Barto, **O**, Pinsker, '17] The following are equivalent for any finite relational structures **A**, **B**:

- 1. there is a gadget reduction from CSP(**B**) to CSP(**A**);
- 2. **B** is homomorphically equivalent to a pp-power of **A**;
- there is a minion (h1 clone) homomorphism from pol(A) to pol(B).

promises

definition of promise contraint satisfaction

Fix two finite relational structures A,B in the same finite language with a homomorphism $A \to B.$

PCSP(**A**, **B**) is the following problem:

Search Given a finite structure I that maps homomorphically to A, find a homomorphism $h: I \rightarrow B$.

Decide

Given I arbitrary structure with the same language,

• accept if $I \rightarrow A$,

 $\blacktriangleright \text{ reject if } \mathbf{I} \not\rightarrow \mathbf{B}.$

example: 1in3- vs. NAE-Sat

- ► 1in3-Sat is a CSP with the template T₂ = ({0, 1}; 1-in-3) where 1-in-3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.
- ▶ NAE-Sat is a CSP with the template $\mathbf{H}_2 = (\{0, 1\}; nae_2)$ where $nae_2 = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}.$

Clearly, **1**-in-**3** \subseteq nae₂, and therefore **T**₂ \rightarrow **H**₂.

The goal here is, given a solvable instance **I** of 1in3-Sat, find a solution to **I** as a NAE-Sat instance.

Both 1in3-Sat and NAE-Sat are NP-complete, but $PCSP(T_2, H_2)$ is in P [Brakensiek, Guruswami, '16].

reductions of promise problems

A reduction from $PCSP(\mathbf{B}_1, \mathbf{B}_2)$ to $PCSP(\mathbf{A}_1, \mathbf{A}_2)$ is a mapping λ : such that

$$\begin{split} \mathbf{I} &\to \mathbf{B}_1 \Rightarrow \lambda \mathbf{I} \to \mathbf{A}_1 \\ \mathbf{I} &\to \mathbf{B}_2 \Leftarrow \lambda \mathbf{I} \to \mathbf{A}_2. \end{split}$$

Example

Assuming λ is the identity (do nothing):

$$\begin{split} \textbf{I} &\rightarrow \textbf{B}_1 \Rightarrow \textbf{I} \rightarrow \textbf{A}_1 \quad \text{iff} \quad \textbf{B}_1 \rightarrow \textbf{A}_1 \\ \textbf{I} &\rightarrow \textbf{B}_2 \Leftarrow \textbf{I} \rightarrow \textbf{A}_2 \quad \text{iff} \quad \textbf{B}_2 \leftarrow \textbf{A}_2. \end{split}$$

Definition. We say that (B_1, B_2) is a homomorphic relaxation of (A_1, A_2) if $B_1 \rightarrow A_1$ and $A_2 \rightarrow B_2$.

reductions of promise problems

A reduction from $PCSP(\mathbf{B}_1, \mathbf{B}_2)$ to $PCSP(\mathbf{A}_1, \mathbf{A}_2)$ is a mapping λ : such that

$$\mathbf{I}
ightarrow \mathbf{B}_1 \Rightarrow \mathbf{\lambda} \mathbf{I}
ightarrow \mathbf{A}_1$$

 $\mathbf{I}
ightarrow \mathbf{B}_2 \Leftarrow \mathbf{\lambda} \mathbf{I}
ightarrow \mathbf{A}_2$

Example

Assuming λ is a gadget replacement, we have (for i = 1, 2)

$$\mathbf{I} \rightarrow \rho \mathbf{A}_i \Leftrightarrow \lambda \mathbf{I} \rightarrow \mathbf{A}_i$$

Therefore λ is a reduction from PCSP($\mathbf{B}_1, \mathbf{B}_2$) to PCSP($\mathbf{A}_1, \mathbf{A}_2$) iff $\mathbf{B}_1 \rightarrow \rho \mathbf{A}_1$ and $\rho \mathbf{A}_2 \rightarrow \mathbf{B}_2$.

Definition. We say that $(\rho A_1, \rho A_2)$ is a pp-power of (A_1, A_2) .

Theorem ([Barto, Bulín, Krokhin, O, '19])

The following are equivalent for finite structures $A_{1,2}$, $B_{1,2}$:

- 1. there is a gadget reduction from $PCSP(B_1, B_2)$ to $PCSP(A_1, A_2)$;
- (B₁, B₂) is a homomorphic relaxation of a pp-power of (A₁, A₂);
 ???!

the best gadget reduction

 $\mathsf{PCSP}(\mathbf{B}_1, \mathbf{B}_2) \xrightarrow{\lambda_1} \mathsf{PCSP}(\mathscr{P}, ?_{\mathbf{B}}) \xrightarrow{\mathsf{id}} \mathsf{PCSP}(\mathscr{P}, ?_{\mathbf{A}}) \xrightarrow{\lambda_2} \mathsf{PCSP}(\mathbf{A}_1, \mathbf{A}_2)$

Both λ_1 and λ_2 are essentially 'gadget reductions'. I will also describe the corresponding 'pp-powers'.

•
$$\lambda_1$$
 and ρ_1 , so that

$$\mathsf{I} o
ho_1 \mathscr{M} \iff \lambda_1 \mathsf{I} o \mathscr{M}$$

 \blacktriangleright λ_2 and ρ_2 , so that

 $\Sigma
ightarrow
ho_2 \mathbf{A} \iff \lambda_2 \Sigma
ightarrow \mathbf{A}$

formulation of $CSP(\mathscr{P})$

Problem

Given a minor (strong Mal'cev) condition Σ , decide whether Σ is trivial, i.e., satisfied by projections on a set of size at least 2.

A minor condition is a finite set of identities of the form

$$f(x_{\pi(1)},\ldots,x_{\pi(n)})\approx g(x_1,\ldots,x_m)$$

for some $\pi \colon [n] \to [m]$. We often use a shorthand $f^{\pi} \approx g$ for the above.

ρ_2 : polymorphisms

We say that $f : A_1^n \to A_2$ is a polymorphism from A_1 to A_2 of arity n if one of the following equivalent conditions is satisfied:

- *f* is a homomorphism from A_1^n to A_2 ,
- ▶ for each relation R^{A_1} and all tuples $a_1, ..., a_n \in R^{A_1}$ we have

$$f(\mathbf{a}_1,\ldots,\mathbf{a}_n)\in R^{\mathbf{A}_2}.$$

The set of all such polymorphisms of arity *n* is denoted by $pol^{(n)}(\mathbf{A}_1, \mathbf{A}_2)$, and $pol(\mathbf{A}_1, \mathbf{A}_2) = \bigcup_{n \in \mathbb{N}} pol^{(n)}(\mathbf{A}_1, \mathbf{A}_2)$.

ρ_2 : polymorphisms

If $f \in \mathsf{pol}^{(n)}(\mathsf{A}_1, \mathsf{A}_2)$ and $\pi \colon [n] \to [m]$, then

 f^{π} : $(\mathbf{x}_1, \dots, \mathbf{x}_n) \mapsto f(\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(n)}) \in \mathsf{pol}^{(m)}(\mathbf{A}_1, \mathbf{A}_2).$

The function f^{π} is called the minor of f defined by π .

A non-empty set of functions from a set A_1 to a set A_2 that is closed under taking minors is called a function minion.

- any (function) clone is a function minion, \mathscr{P} is the projection minion.
- we say that a minor condition Σ is satisfied in \mathcal{M} (and write $\Sigma \to \mathcal{M}$) if there is $\xi \colon \Sigma \to \mathcal{M}$ s.t.

 $\xi(f)^{\pi} = \xi(g)$ for each identity $f^{\pi} \approx g$.

λ_2 : PCSP(\mathscr{P} , \mathscr{M}) \rightarrow PCSP(A_1 , A_2)

Given a minor condition Σ , construct an instance $I_{A_1}(\Sigma)$ of PCSP(A_1, A_2):

- ► for each symbol f of arity n in Σ , take a copy of \mathbf{A}_1^n with vertices labelled by $f(a_1, ..., a_n)$ for $a_{1,...,n} \in \mathbf{A}_1$;
- for each identity

$$f(x_{\pi(1)},\ldots,x_{\pi(n)}) \approx g(x_1,\ldots,x_m)$$

where $\pi : [n] \rightarrow [m]$, and $a_{1,...,m} \in \mathbf{A}_1$, identify vertices labelled

$$f(a_{\pi(1)}, ..., a_{\pi(n)})$$
 and $g(a_1, ..., a_m)$.

λ_2 & ρ_2 : the second reduction

Observation. For all C, we have

$$\Sigma \to \mathsf{pol}(\mathsf{A}_1, \mathsf{C}) \iff \mathsf{I}_{\mathsf{A}_1}(\Sigma) \to \mathsf{C}.$$

Theorem The indicator structure gives a reduction:

$$\mathsf{PCSP}(\mathscr{P},\mathsf{pol}(\mathsf{A}_1,\mathsf{A}_2)) \xrightarrow{\mathsf{I}_{\mathsf{A}_1}} \mathsf{PCSP}(\mathsf{A}_1,\mathsf{A}_2)$$

Proof. We need to show that

1. if
$$\Sigma$$
 is trivial, then $\mathbf{I}_{\mathbf{A}_1}(\Sigma) \to \mathbf{A}_1$, and

2. if
$$\mathbf{I}_{\mathbf{A}_1}(\Sigma) \to \mathbf{A}_2$$
 then $\Sigma \to \mathsf{pol}(\mathbf{A}_1, \mathbf{A}_2)$.

(2) follows directly, but also (1) follows since $\mathscr{P} \to \mathsf{pol}(\mathsf{A}_1, \mathsf{A}_1)$.

λ_1 : PCSP($\mathbf{B}_1, \mathbf{B}_2$) \rightarrow PCSP(\mathscr{P}, \mathscr{B})

Starting with **I** similar to **B**₁, construct a minor condition $\Sigma(\mathbf{B}_1, \mathbf{I})$:

- for each $v \in I$, add to Σ a symbol f_v of arity B_1 ,
- ► for each $(v_1, ..., v_k) \in R^{I}$, add to Σ a symbol $g_{(v_1,...,v_k),R}$ of arity R^{B_1} , and
- introduce identities

$$f_{v_{1}}(x_{b_{1}}, \dots, x_{b_{n}}) \approx g_{(v_{1}, \dots, v_{k}), R}(x_{r_{1}(1)}, \dots, x_{r_{m}(1)})$$

$$\vdots$$

$$f_{v_{k}}(x_{b_{1}}, \dots, x_{b_{n}}) \approx g_{(v_{1}, \dots, v_{k}), R}(x_{r_{1}(k)}, \dots, x_{r_{m}(k)})$$

$$g_{v_{k}}(x_{b_{1}}, \dots, x_{b_{n}}) \approx g_{v_{1}, \dots, v_{k}}(x_{b_{1}, \dots, b_{n}})$$

where $R^{\mathbf{B}_1} = \{r_i \mid i \in [m]\}$ and $B_1 = \{b_i \mid i \in [n]\}$.

examples of conditions from structures

• $\Sigma(K_3, \bigcirc)$ is the Siggers identity!

$$v(x, y, z) \approx s(x, y, z, x, y, z)$$

$$v(x, y, z) \approx s(y, x, x, z, z, y)$$

$$x - y$$

- $\Sigma(K_3, K_3)$ is trivial!
- Σ(T, ♂₃) is ternary weak near unanimity! (T is the template of 1in3-Sat.)
- ► $\Sigma(1-\text{in-}k, \text{inj}_{k,n})$, where $\text{inj}_{k,n} = \{(a_1, ..., a_k) \mid a_i \in [n], a_i \neq a_j \text{ if } i \neq j\}$, are (n, k) dissected weak near unanimity identities. [GJKMP'20].

ho_1 : the free structure

Given a minion \mathcal{M} and a (finite) structure B_1 , we define a structure $F_{\mathcal{M}}(B_1)$:

- the universe are the B_1 -ary functions in \mathcal{M} , i.e., $F_{\mathcal{M}}(\mathbf{B}_1) = \mathcal{M}^{(B_1)}$,
- ▶ the relation R^{F} is defined to contain all tuples $(f_1, ..., f_k)$ such that there is $g \in \mathscr{M}^{(R^{B_1})}$ and

$$f_1(x_{b_1}, \dots, x_{b_n}) \approx g(x_{r_1(1)}, \dots, x_{r_m(1)})$$
$$\vdots$$
$$f_k(x_{b_1}, \dots, x_{b_n}) \approx g(x_{r_1(k)}, \dots, x_{r_m(k)})$$

where $R^{\mathbf{B}_1} = \{r_i \mid i \in [m]\}$ and $B_1 = \{b_i \mid i \in [n]\}$.

λ_1 & ho_1 : the first reduction

Observation. for all **C**, we have

$$\mathbf{C} \to \mathbf{F}_{\mathscr{M}}(\mathbf{B}_1) \iff \mathbf{\Sigma}(\mathbf{B}_1,\mathbf{C}) \to \mathscr{M}$$

Theorem

The assignment $\mathbf{I} \mapsto \mathbf{\Sigma}(\mathbf{B}_1, \mathbf{I})$ *gives a reduction:*

$$\mathsf{PCSP}(\mathbf{B}_1, \mathbf{B}_2) \xrightarrow{\boldsymbol{\Sigma}(\mathbf{B}_1, -)} \mathsf{PCSP}(\mathscr{P}, \mathsf{pol}(\mathbf{B}_1, \mathbf{B}_2))$$

back to the whole reduction

 $\mathsf{PCSP}(\mathbf{B}_1, \mathbf{B}_2) \xrightarrow{\lambda_1} \mathsf{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\mathsf{id}} \mathsf{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\lambda_2} \mathsf{PCSP}(\mathbf{A}_1, \mathbf{A}_2)$ where $\mathscr{A} = \mathsf{pol}(\mathbf{A}_1, \mathbf{A}_2)$ and $\mathscr{B} = \mathsf{pol}(\mathbf{B}_1, \mathbf{B}_2)$. To make the middle reduction work, we need

$$\mathscr{P} \to \mathscr{P} \quad \text{and} \quad \mathscr{A} \to \mathscr{B}.$$

A minion homomorphism is a mapping $\xi: \mathcal{M} \to \mathcal{N}$ s.t.

$$\xi(f)^{\pi} = \xi(f^{\pi})$$
 for all $\pi \colon [n] \to [m]$.

Such homomorphisms preserve satisfaction of minor conditions.

conclusion

Theorem [Barto, Bulín, Krokhin, O, '19]

The following are equivalent for all pairs of similar relational structures A_1 , A_2 and B_1 , B_2 :

- there is a gadget reduction from PCSP(**B**₁, **B**₂) to PCSP(**A**₁, **A**₂);
- 2. $(\mathbf{B}_1, \mathbf{B}_2)$ is a homomorphic relaxation a pp-power of $(\mathbf{A}_1, \mathbf{A}_2)$;
- there is a minion homomorphism from pol(A₁, A₂) to pol(B₁, B₂).

conclusion

- Generalised loop conditions $C \mapsto \Sigma(A, C)$;
- Free structure $\mathcal{M} \mapsto \mathbf{F}_{\mathcal{M}}(\mathbf{A})$;
- Indicator structure $\Sigma \mapsto I_A(\Sigma)$,
- ▶ Polymorphisms $C \mapsto pol(A, C)$.

Theorem [Barto, Bulín, Krokhin, O, '19]

For a fixed finite structure **A**. The following equivalences hold for all **B** a structure, \mathcal{M} a minion, and Σ minor condition.

$$\Sigma(\mathbf{A}, \mathbf{B}) \to \mathscr{M} \quad \text{iff} \quad \mathbf{B} \to \mathbf{F}_{\mathscr{M}}(\mathbf{A})$$
 (1)

$$I_{A}(\Sigma) \rightarrow B$$
 iff $\Sigma \rightarrow pol(A, B)$ (2)

credits

- pol-inv Galois correspondence [Pippenger, '02]
- polymorphisms in promise constraint satisfaction [Austrin, Håstad, Guruswami, '17]
- inclusions of function minions [Brakensiek, Guruswami, '18]
- h1 clone homomorphisms for CSPs [Barto, O, Pinsker, '18]
- minion homomorphisms [Barto, Bulín, Krokhin, O, '19]
- adjunctions [Wrochna, Živný, '20]