Algebraic topology and constraint satisfaction

Jakub Opršal

joint work with Andrei Krokhin, Marcin Wrochna, Standa Živný, et al.

Can. J. Math. Vol. XXIX, No. 3, 1977, pp. 498-527

VARIETIES OBEYING HOMOTOPY LAWS

WALTER TAYLOR

The algebraic structure of a topological algebra \mathscr{A} influences its topological structure in a way which is profound but not well understood. (See § 7 below for various examples.) Here we examine this influence rather generally, and give a fairly complete analysis of one of the many forms it can take, namely, the influence of the identities of \mathscr{A} on the group identities obeyed by the homotopy group (or groups of the components) of \mathscr{A}. For \mathscr{V} a variety (i.e. class of algebras defined by identities), and λ a group law, we say that \mathscr{V} obeys λ in homotopy if and only if every arc-component of every topological algebra in \mathscr{V} has fundamental group obeying λ. Our investigation of this relation was inspired by the much earlier results of Schreier [44], who proved in 1924 that topological groups have commutative homotopy (strengthened versions are due to Cartan, Pontrjagin and Hopf), and Wallace [52], who proved in 1953 that topological lattices are homotopically trivial (see also [12] and [8]).
Our main theorem (3.2 below) states that \mathscr{V} obeys λ in homotopy if and only if every group in the idempotent reduct of \mathscr{V} obeys λ. As a corollary, we see that for fixed λ, " \mathscr{V} obeys λ in homotopy" is a Malcev-definable (see [46], [40] or [3]) property of \mathscr{V}. The hard part of the theorem is constructing a topological algebra in \mathscr{V} whose fundamental group may fail to obey λ. We do this via

Theorem [Taylor, '77]

If a topological space X has a Taylor polymorphism, then $\pi_{n}(X)$ are Abelian for all $n>0$.

A polymorphism of a topological space X is a continuous map $X^{n} \rightarrow X$, a polymorphism a group \mathbf{G} is a group homomorphism $\mathbf{G}^{n} \rightarrow \mathbf{G}$, etc.

Theorem [Taylor, '77]
The following are equivalent for any group identity $t \approx s$ and a linear idempotent Maltsev condition Σ :

1. If pol (X) satisfies \sum then $\pi_{1}(X) \models t \approx s$.
2. If $\operatorname{pol}(X)$ satisfies \sum then $\pi_{n}(X) \models t \approx s$ for all $n>0$.
3. If $\operatorname{pol}(\mathbf{G})$ satisfies Σ then $\mathbf{G} \models t \approx s$.

Sketch of a proof

Lemma

For all topological spaces X, and all $n>0$, there is a minion homomorphism pol ${ }^{\text {id }}(X) \rightarrow$ pol $^{\text {id }}\left(\pi_{n}(X)\right)$.

A minion homomorphism is a mapping $\xi: \mathscr{M} \rightarrow \mathscr{N}$ that preserves taking minors, i.e., for all $f \in \mathscr{M}^{(n)}$ and $\pi:[n] \rightarrow[m]$,

$$
\xi(f)\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \approx \xi\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right)
$$

Lemma [Wrochna, Živný, '19]

If a functor Γ preserves products then there is a minion homomorphism

$$
\operatorname{pol}(A, B) \rightarrow \operatorname{pol}(\Gamma A, Г B)
$$

for all A, B.

Sketch of a proof

Theorem

The following are equivalent for any group identity $t \approx s$ and a linear idempotent Maltsev condition Σ :

1. If $\operatorname{pol}(X)$ satisfies Σ then $\pi_{1}(X) \models t \approx s$.
2. If $\operatorname{pol}(X)$ satisfies \sum then $\pi_{n}(X) \models t \approx s$ for all $n>0$.
3. If $\operatorname{pol}(\mathbf{G})$ satisfies Σ then $\mathbf{G} \models t \approx s$.

The previous slide shows ($3 \rightarrow 2$). ($2 \rightarrow 1$) is trivial.
Lemma ($1 \rightarrow 3$)
There is a functor B: Grp \rightarrow Top such that $\pi_{1}(B \mathbf{G})=\mathbf{G}$, and it preserves products!

Promise constraint satisfaction

Fix two finite relational structures \mathbb{A}, \mathbb{B} in the same finite language with a homomorphism $\mathbb{A} \rightarrow \mathbb{B}$.
$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ (search)
Given a finite structure II that maps homomorphically to \mathbb{A}, find a homomorphism $h: \mathbb{I} \rightarrow \mathbb{B}$.

We will talk about $\operatorname{PCSP}\left(C_{2 k+1}, K_{3}\right)$.
Conjecture [Brakensiek, Guruswami, '16]
$\operatorname{PCSP}\left(H, K_{c}\right)$ is NP-complete for any non-bipartite loopless H and any c such that H is c-colourable.

The goal

A polymorphism from \mathbb{A} to \mathbb{B} is a homomorphism $\mathbb{A}^{n} \rightarrow \mathbb{B}$. The set of all polymorphisms pol($\mathbb{A}, \mathbb{B})$ form a function minion.

Theorem [Austrin, Håstad, Guruswami, '17; Barto, Bulín, Krokhin, \qquad '21]
If $\operatorname{pol}(\mathbb{A}, \mathbb{B})$ allows a minion homomorphism to a minion of bounded essential arity, then $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ is NP-hard.

A way

Graph \rightarrow hTop \rightarrow Grp

A functor $\mathbf{G r a p h} \rightarrow \mathbf{h T o p}$ that preserves products* [Kozlov, '08] For a set V, Δ^{V} is the standard simplex with V vertices, i.e.,

$$
\Delta^{v}=\left\{\lambda \in[0,1]^{V}: \sum_{v} \lambda_{v}=1\right\}
$$

Let G be a graph, we construct a topological space $B \times(G)$ as the subspace of $\Delta^{V(G)} \times \Delta^{V(G)}$ consisting of points (λ, ρ) such that

$$
\left\{u: \lambda_{u}>0\right\} \times\left\{v: \rho_{v}>0\right\} \subseteq E(G)
$$

* up to homotopy equivalence

$\mathrm{Bx}\left(K_{4}\right)$

$\mathrm{Bx}\left(C_{5}\right)$ and $\mathrm{Bx}\left(K_{3}\right)$

The final piece

We compose two minion homomorphisms:

$$
\operatorname{pol}\left(C_{2 k+1}, K_{3}\right) \xrightarrow{\mathrm{Bx}} \operatorname{pol}\left(S^{1}, S^{1}\right) \xrightarrow{\pi_{1}} \operatorname{pol}(\mathbb{Z})
$$

To get $\xi: \operatorname{pol}\left(C_{2 k+1}, K_{3}\right) \rightarrow \operatorname{pol}(\mathbb{Z})$.
Lemma
If \mathscr{M} is a locally finite minion ${ }^{\dagger}$ and $\xi: \mathscr{M} \rightarrow \operatorname{pol}(\mathbb{Z})$ is a minion homomorphism then the image of \mathscr{M} under ξ has bounded essential arity.
${ }^{\dagger}$ a minion \mathscr{M} is locally finite if $\mathscr{M}^{(n)}$ is finite for all n.

The result

Theorem [Krokhin, _, Wrochna, Živný, '19]

For each $k>0$, it is NP-hard to find a 3-colouring of a graph that maps to $C_{2 k+1}$.
[1] Andrei Krokhin, _, The complexity of 3-colouring H-colourable graphs. FOCS, 2019.
[2] Marcin Wrochna and Stanislav Živný. Improved hardness for H-colourings of G-colourable graphs. SODA, 2020.
[3] Andrei Krokhin, _, Marcin Wrochna, Stanislav Živný. Topology and adjunction in promise constraint satisfaction. arXiv:2003.11351, 2020.

