# Algebraic topology and constraint satisfaction

Jakub Opršal

joint work with Andrei Krokhin, Marcin Wrochna, Standa Živný, et al.



Can. J. Math. Vol. XXIX, No. 3, 1977, pp. 498-527

#### VARIETIES OBEYING HOMOTOPY LAWS

#### WALTER TAYLOR

The algebraic structure of a topological algebra  $\mathscr{A}$  influences its topological structure in a way which is profound but not well understood. (See § 7 below for various examples.) Here we examine this influence rather generally, and give a fairly complete analysis of one of the many forms it can take, namely, the influence of the identities of  $\mathscr{A}$  on the group identities obeyed by the homotopy group (or groups of the components) of  $\mathscr{A}$ . For  $\mathscr{V}$  a variety (i.e. class of algebras defined by identities), and  $\lambda$  a group law, we say that  $\mathscr{V}$  obeys  $\lambda$  in homotopy if and only if every arc-component of every topological algebra in  $\mathscr{N}$  has fundamental group obeying  $\lambda$ . Our investigation of this relation was inspired by the much earlier results of Schreier [44], who proved in 1924 that topological groups have commutative homotopy (strengthened versions are due to Cartan, Pontrjagin and Hopf), and Wallace [52], who proved in 1953 that topological lattices are homotopically trivial (see also [12] and [8]).

Our main theorem (3.2 below) states that  $\mathscr{V}$  obeys  $\lambda$  in homolopy if and only if every group in the idempotent reduct of  $\mathscr{V}$  obeys  $\lambda$ . As a corollary, we see that for fixed  $\lambda$ , " $\mathscr{V}$  obeys  $\lambda$  in homotopy" is a Malcev-definable (see [46], [40] or [3]) property of  $\mathscr{V}$ . The hard part of the theorem is constructing a topological algebra in  $\mathscr{V}$  whose fundamental group may fail to obey  $\lambda$ . We do this via

#### Theorem [Taylor, '77]

If a topological space X has a Taylor polymorphism, then  $\pi_n(X)$  are Abelian for all n > 0.

A polymorphism of a topological space X is a continuous map  $X^n \to X$ , a polymorphism a group **G** is a group homomorphism  $\mathbf{G}^n \to \mathbf{G}$ , etc.

#### Theorem [Taylor, '77]

The following are equivalent for any group identity  $t \approx s$  and a linear idempotent Maltsev condition  $\Sigma$ :

- 1. If pol(X) satisfies  $\Sigma$  then  $\pi_1(X) \models t \approx s$ .
- 2. If pol(X) satisfies  $\Sigma$  then  $\pi_n(X) \models t \approx s$  for all n > 0.
- 3. If  $pol(\mathbf{G})$  satisfies  $\Sigma$  then  $\mathbf{G} \models t \approx s$ .

# Sketch of a proof

#### Lemma

For all topological spaces X, and all n > 0, there is a minion homomorphism  $\text{pol}^{id}(X) \to \text{pol}^{id}(\pi_n(X))$ .

A minion homomorphism is a mapping  $\xi : \mathscr{M} \to \mathscr{N}$  that preserves taking minors, i.e., for all  $f \in \mathscr{M}^{(n)}$  and  $\pi : [n] \to [m]$ ,

$$\xi(f)(x_{\pi(1)}, \dots, x_{\pi(n)}) \approx \xi(f(x_{\pi(1)}, \dots, x_{\pi(n)})).$$

#### Lemma [Wrochna, Živný, '19]

If a functor  ${\ensuremath{\Gamma}}$  preserves products then there is a minion homomorphism

$$pol(A, B) \rightarrow pol(\Gamma A, \Gamma B)$$

for all A, B.

# Sketch of a proof

#### Theorem

The following are equivalent for any group identity  $t \approx s$  and a linear idempotent Maltsev condition  $\Sigma$ :

- 1. If pol(X) satisfies  $\Sigma$  then  $\pi_1(X) \models t \approx s$ .
- 2. If pol(X) satisfies  $\Sigma$  then  $\pi_n(X) \models t \approx s$  for all n > 0.
- 3. *If*  $pol(\mathbf{G})$  *satisfies*  $\Sigma$  *then*  $\mathbf{G} \models t \approx s$ *.*

The previous slide shows (3 $\rightarrow$ 2). (2 $\rightarrow$ 1) is trivial.

Lemma (1 $\rightarrow$ 3) There is a functor **B**: **Grp**  $\rightarrow$  **Top** such that  $\pi_1(BG) = G$ , and it preserves products!

# Promise constraint satisfaction

Fix two finite relational structures  $\mathbb{A}$ ,  $\mathbb{B}$  in the same finite language with a homomorphism  $\mathbb{A} \to \mathbb{B}$ .

## $\mathsf{PCSP}(\mathbb{A}, \mathbb{B})$ (search)

Given a finite structure  $\mathbb{I}$  that maps homomorphically to  $\mathbb{A}$ , find a homomorphism  $h: \mathbb{I} \to \mathbb{B}$ .

We will talk about  $PCSP(C_{2k+1}, K_3)$ .

Conjecture [Brakensiek, Guruswami, '16]

 $PCSP(H, K_c)$  is NP-complete for any non-bipartite loopless H and any c such that H is c-colourable.

# The goal

A polymorphism from  $\mathbb{A}$  to  $\mathbb{B}$  is a homomorphism  $\mathbb{A}^n \to \mathbb{B}$ . The set of all polymorphisms pol( $\mathbb{A}, \mathbb{B}$ ) form a function minion.

Theorem [Austrin, Håstad, Guruswami, '17; Barto, Bulín, Krokhin, \_\_, '21] If pol( $\mathbb{A}, \mathbb{B}$ ) allows a minion homomorphism to a minion of bounded essential arity, then PCSP( $\mathbb{A}, \mathbb{B}$ ) is NP-hard.

## A way

#### $\mathbf{Graph} \rightarrow \mathbf{hTop} \rightarrow \mathbf{Grp}$

A functor **Graph**  $\rightarrow$  **hTop** that preserves products<sup>\*</sup> [Kozlov, '08] For a set *V*,  $\Delta^V$  is the standard simplex with *V* vertices, i.e.,

$$\Delta^{V} = \{\lambda \in [0,1]^{V} : \sum_{\nu} \lambda_{\nu} = 1\}.$$

Let *G* be a graph, we construct a topological space  $B_X(G)$  as the subspace of  $\Delta^{V(G)} \times \Delta^{V(G)}$  consisting of points  $(\lambda, \rho)$  such that

$$\{u:\lambda_u>0\}\times\{v:\rho_v>0\}\subseteq E(G).$$

\* up to homotopy equivalence

# $Bx(K_4)$



 $Bx(C_5)$  and  $Bx(K_3)$ 



# The final piece

We compose two minion homomorphisms:

$$\mathsf{pol}(C_{2k+1}, K_3) \stackrel{\mathsf{Bx}}{\longrightarrow} \mathsf{pol}(S^1, S^1) \stackrel{\pi_1}{\longrightarrow} \mathsf{pol}(\mathbb{Z})$$

To get  $\xi \colon \mathsf{pol}(C_{2k+1}, K_3) \to \mathsf{pol}(\mathbb{Z}).$ 

#### Lemma

If  $\mathscr{M}$  is a locally finite minion<sup>†</sup> and  $\xi : \mathscr{M} \to \text{pol}(\mathbb{Z})$  is a minion homomorphism then the image of  $\mathscr{M}$  under  $\xi$  has bounded essential arity.

<sup>†</sup> a minion  $\mathcal{M}$  is locally finite if  $\mathcal{M}^{(n)}$  is finite for all *n*.

# The result

### Theorem [Krokhin, \_\_, Wrochna, Živný, '19]

# For each k > 0, it is NP-hard to find a 3-colouring of a graph that maps to $C_{2k+1}$ .

- [1] Andrei Krokhin, \_\_, *The complexity of 3-colouring H-colourable graphs.* FOCS, 2019.
- [2] Marcin Wrochna and Stanislav Živný. *Improved hardness for H-colourings of G-colourable graphs*. SODA, 2020.
- [3] Andrei Krokhin, \_\_, Marcin Wrochna, Stanislav Živný. *Topology and adjunction in promise constraint satisfaction*. arXiv:2003.11351, 2020.