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Part I. What problems am | talking about?
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Graph colouring

e

Given two graphs G = (V;, Eg) and H = (Vy, Ey), a G — His amapping
h: Ve — Vjy that preserves edges,
uv € Eg = h(u)h(v) € Ep.

Example. A of a graph G with k colours is just a homomorphism c: G — K.



The H-colouring problem

Given two graphs G = (V;, Eg)and H = (Vy, Ey), a G — His amapping
: Vo — Vjy that preserves edges,
uv € Ec = h(u)h(v) € Ep.

H-colouring
Fix a graph H (called template). Given a graph G, decide whether there is a G — H.
» K,-colouring is easy (it is solvable in logspace )

» Kj-colouring is NP-complete for all k > 2.
» What about other graphs H?

Theorem .
Unless P = NP, the only graph H-colouring problem that is solvable in polynomial time is 2-colouring.
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Part Il. What the ... is the solution space of H-colouring?



Solution posets: Multihomomorphisms

A is a function
f: V(G) — 2YUD\ {B} such that, for all edges
uv € E(G), we have that

f(u) x f(v) € E(H).
» Multihomomorphisms are naturally ordered
f<g<ef(u) Cg(u)forallu

» mhom(G, H) is the
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Solution spaces

Given graphs G and H, we define the space
Example.  Hom(Ky, K3) =~ S*.

Hom(G, H) = [N mhom(G, H)| Example.  In mhom(K>, K1) we have:
» The vertices are multihomomorphisms, 01 <02]1<02|13
» f and g are connected by an arcif f < g, and
» {f,g, h} formatriangleif f < g < h,
> etc. 01 <0J12 <0]123
We view Fh|s as the of instance G of which creates 2-dimensional faces.
H-colouring.
Two colourings f and g are if g can be obtained from f by changing one value at a time while

remaining a valid colouring.



4-colourings of K,

32

02

Hom(K>, Ki)



4-colourings of K,

03 21

Hom(K>, Ki)



4-colourings of K,
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4-colourings of K,

Hom(K>, Ks)
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How does the topology of the solution space influence the
complexity of a computational problem?

Part Ill. What can we say about complexity in terms of topology?



Topological methods in complexity of graph colouring

Conjecture

Colouring graphs that are promised to map
homomorphically to C(5.1) with c colours is
NP-complete for all ¢ > 2.

[11 Krokhin, O (2019). The complexity of 3-colouring
H-colourable graphs. Symposium on Foundations of
Computer Science, FOCS 2019.

[2] Wrochna, Zivny (2020). Improved hardness for
H-colourings of G-colourable graphs. Symposium on
Discrete Algorithms, SODA 2020.

[31 Avwvakumov, Filakovsky, O, Tasinato, & Wagner (2025).
Hardness of 4-colouring G-colourable graphs. Accepted to
STOC 2025.

Theorem.

Colouring graphs that are promised to map
homomorphically to C (5.1 with 4 colours is
NP-complete.
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Theorem .
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.
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Part IV. A proof



Outline of the proof

Theorem .
Unless P = NP, the only graph H-colouring problem that

is solvable in polynomial time is 2-colouring. 1. ldentify which problems are NP-hard using the

algebraic approach to the

2. If H-colouring is not NP-hard, show that its
solution spaces are
v e
3. Use Brower's fixed-point theorem to show that
H has a loop if H is not bipartite.
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Algebraic approach to the constraint satisfaction problem

An operation t: A” — Ais

(x = . )=ty = . )
(+ x . D=1t(x y . <)
( x) =i+ Y)

forall x,y € A.
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NP-complete

Theorem .
A (core) graph H has a Taylor homomorphism if and
only if it is bipartite.



Algebraic approach to the constraint satisfaction problem

An operation t: A” — Ais

forall x,y € A.

Lemma .
If a topological space X admits a continuous
idempotent

: A7 — Ais idempotent if t(x, ..., x) = x.

, then 71(X) is Abelian.

Theorem (CSP Dichotomy).
A CSP with a finite template A is either

1. admits a
inP ; or

A" — A and is
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NP-complete

Theorem .
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Taylor — contractibility

A topological space X is called if it is homotopy equivalent to a point {x}.
For us, this is equivalent to ,(X) = 0 forall n > 0.

Theorem .
Every connected finite poset that admits a monotone Taylor operation is

The problem is that Hom( G, H) is not Taylor if H is Taylor!
Theorem .
If H admits a Taylor homomorphism, then Hom(G, H) is forall G.

Therefore, unless H-colouring is NP-hard, all solution spaces are



4-colourings of K,

Hence, 4-colouring is NP-hard!



Outline of the proof

Theorem .
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. Use Brower’s fixed-point theorem to show
that H has a loop if / is not bipartite.
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A fixed-point theorem

Theorem (Brower's fixed-point theorem).
Every continuous function f : D" — D" has a , I.e., there exists x € D" such that f(x) = x.

More generally: If X is a contractible compact CW-complex, then every function f: X — X has a
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The proof

Theorem .
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

T

Proof. Assume that H is not-bipartite, and consider the
space X = Hom(K>, H).

Observe that the space admits a fixed-point free Z,-action
¢®: X — X that for each multihomomorphism m flips the
values of m(0) and m(1).

If H is not-bipartite then ¢ fixes a connected component
of X. Indeed, if uv is an edge of an odd cycle of H then

is connected to vu = ¢(uv).

If H admitted a Taylor homomorphism, mhom(K,, H)
would admit a lax-Taylor operation, and all its connected
component would be contractible.

Hence, ¢ which acts on the component of uv has a fixed
point, the contradiction. |
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Theorem .
A constraint satisfaction problem is NP-complete, unless each connected component of the solution space is
(i.e., topologically trivial).

Corollary .
Unless P = NP, the only graph H-colouring problem that is solvable in polynomial time is 2-colouring.
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