The complexity of 3-colouring H-colourable graphs

Andrei Krokhin and Jakub Opršal

60th Annual Symposium on Foundations of Computer Science, 2019

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 3 colours?

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 3 colours?

No! (Unless P = NP) [Karp, "72]

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 4 colours?

No! (Unless P = NP) [Khanna, Linian, Safra, '00]

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 5 colours?

No! (Unless P = NP) [Bulín, Krokhin, _,'19]

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 6 colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 7 colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 1729 colours?
(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 2^{259} colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by $O(\log n)$ colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by $O\left(n^{<1 / 5}\right)$ colours?

Yes! [Kawarabayashi, Thorup, '17]

Is there a polynomial time algorithm that colours a given 3 -colourable graph by $O(\log n)$ colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 2^{259} colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 1729 colours?
(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 7 colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 6 colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 5 colours?

No! (Unless P = NP) [Bulín, Krokhin, _,'19]

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 4 colours?

No! (Unless P = NP) [Khanna, Linian, Safra, '00]

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 3 colours?

No! (Unless P = NP) [Karp, "72]

Is there a polynomial time algorithm that colours a given

 2-colourable graph by 3 colours?Yes. (easy)

Is there a polynomial time algorithm that colours a given $(2+\epsilon)$-colourable graph by 3 colours?

REAL GOAL

Create new tools for showing lower bounds approximate graph colouring.

Graph homomorphism problem

Given two graphs G and H, decide whether there is a graph homomorphism (edge-preserving map) from G to H.
$f: V(G) \rightarrow V(H)$ is a graph homomorphism from G to H if $(f(u), f(v)) \in E(H)$ for each
$(u, v) \in E(G)$.

- If we fix H, we get so-called H-colouring problem.
- K_{c}-colouring is just c-colouring.

Theorem [Hell, Nešetřil, "90].
For any non-bipartite loop-less graph H, H-colouring is NP-complete.

Promise graph homomorphism

Question.
How hard is to find a homomorphism to G given an H-colourable graph?

Conjecture [Brakensiek, Guruswami, '16].

This problem is NP-hard for any G, H such that $H \rightarrow G$ and both are loopless and bipartite.

Theorem.
Let \mathbf{H} be a 3-colourable non-bipartite graph. Then finding a colouring of a given H-colourable graph with 3 colours is NP-hard.

Promise graph homomorphism

Question.

How hard is to colour a given $(2+\epsilon)$-colourable graph by c colours?
Conjecture [Brakensiek, Guruswami, '16].
This problem is NP-hard for any $\epsilon>0$ and $c \geq 2+\epsilon$.
Theorem.
This problem is NP-hard for $c=3$ and any $\epsilon>0$.
Formalized by so-called circular chromatic number.

(Promise) constraint satisfaction

- (non-uniform) CSP can be viewed as H -colouring generalized to arbitrary relational structures.
- H-colouring was one of the base cases for the CSP dichotomy conjecture [Feder, Vardi,"98] (a.k.a. Bulatov-Zhuk theorem [Bulatov, '17; Zhuk, '17]).
- Promise CSP includes e.g. so-called $(2+\epsilon)$-SAT [Austrin, Guruswami, Håstad, '17].
- A (special) theory of gadget reductions for promise CSP (using universal algebra) is described in [Barto, Bulín, Krokhin, -_'19].

Methods

Step 1. Label Cover

A label cover instance is a tuple $\left(U, V, I, r, E \subseteq U \times V,\left\{\pi_{e}:[I] \rightarrow[r] \mid e \in E\right\}\right)$.
m-List Label Cover

- Assuming there is an assignment $s: U \rightarrow[/], V \rightarrow[r]$ such that $\pi_{(u, v)}(s(u))=s(v)$ for each $(u, v) \in E$,
- find $S: U \rightarrow\binom{[/]}{m}, V \rightarrow\binom{[r]}{m}$ such that $\pi_{(u, v)}(S(u)) \cap S(v) \neq \emptyset$ for each $(u, v) \in E$.

Theorem [Arora, Safra, et al., "98; Raz, '01 + Folklore]. For each $m \geq 1, m$-List Label Cover is NP-hard.

Step 2. Gadgets

The n-th (tensor) power of a graph G is the graph G^{n} with $V\left(G^{n}\right)=V(G)^{n}$ and

$$
\left(\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{n}\right)\right) \in E\left(G^{n}\right) \Leftrightarrow\left(u_{i}, v_{i}\right) \in E(G) \text { for all } i .
$$

Step 2. Gadgets

Assuming H contains an odd cycle $C_{2 k+1}$. From an LC instance construct a graph G

- Replace each $u \in U$ with $C_{2 k+1}^{l}$ and $v \in V$ with $C_{2 k+1}^{r}$,
- collapse some vertices according to $\pi_{e}{ }^{\prime}$ s.
soundness. Given a solvable instance of LC, find a homomorphism from G to H.
completeness. Given a 3 -colouring of G, find a list of m candidates for each variable of the LC instance.

Identify at most m important (influential, essential, ...) coordinates of a given $C_{2 k+1}^{n} \rightarrow K_{3}$!

Step 3. Topology

- Count how many times you 'walk around'.
- We are interested in continuous mappings from T^{n} to S^{1}.

Step 3．Topology

$4 \square>4$ 岛 \downarrow 引 三

Step 3. Topology

Conclusions

Theorem.
Let \mathbf{H} be a 3-colourable non-bipartite graph. Then finding a colouring of a given H-colourable graph with 3 colours is NP-hard.

Theorem.
It is NP-hard to colour a given $(2+\epsilon)$-colourable graph with 3 colours.
Theorem [Wrochna, Živný, SODA'20].
It is NP-hard to $(4-\epsilon)$-colour a given $(2+\epsilon)$-colourable graph.

